[3 Hrs] Total Marks: 80

Note: Q. 1 is compulsory

Solve any 3 questions out of remaining questions.

Assume suitable data if necessary

 $Q. 1 \qquad \qquad (20)$

- a) Why do we need optimization? Explain unconstrined optimization
- b) Explain curve fitting for sinusoidal function.
- c) What do you mean error? Discuss propogation of error with suitable?
- d) Write short note on Golden Section search.

Q. 2

a) Solve the equation dy / dx = $2e^x$ -y using Milne Predictor Corrector Method. Given that y(0)=2. Find y at x=0.4 with a step size of 0.1. The values of x and y are given in table below:

X	0	0.1	0.2	0.3
Y	2	2.01	2.04	2.09

(10)

b) Write the algorithm of bisection method and find the root of equation $\cos x - 1.3x=0$ with accuracy of 0.01.

(10)

Q. 3

a) Solve differential equation dy / dx = $x^2 + 2xy$, y(0) = 0 by Picard's method upto 3^{rd} approximation.

(10)

b) For the following data find the polynomial f(x) which passes through all points using Newton's Divided difference Interpolation and also find f(1.3).

(10)

2	X	0	2	4	6
3	f(x)	1	13 34	73	229

Q. 4

a) Solve following system of equations by LU decomposition method

(10)

(10)

$$2x+y+z=10$$

 $3x+2y+3z=18$

$$x+4y+9z=16$$

b) Solve the equation dy/dx = x+y given that y(0) = 1, h = 0.1using Runge Kutta 2^{nd} Order method for y(0.2)

72802 Page **1** of **2**

Q. 5

a) State the necessary and sufficient conditions for solving multivariable optimization problem with equality constraint using Lagrange's multiplier method. Use Lagrange's Multiplier method to minimize

$$f(x,y) = 4x^2 + 9y^2$$

subjected to

$$xy=36, x,y>=0$$

-(10)

b) Write short note on

(10)

- i) Extrapolation and interpolation
- ii) Feasible solution and optimal feasible solution

Q. 6

a) Find the maximum value using Graphical method

Maximize
$$Z=25x+30y$$

subjected to

$$2x+3y <= 1500$$

$$3x+2y <= 1500$$

$$x <= 400, y <= 400$$

$$x,y >= 0$$
(10)

b) Solve the following LPP using Simplex method

(10)

Max
$$Z= 3x+2y+5z$$
 subjected to

$$2x+3y-2z \le 40$$

 $4x-2y+z \le 24$
 $x-5y-6z \ge 2$
 $x,y,z \ge 0$

72802